Skip to main content
Log in

Rates of chilling to 0°C: implications for the survival of microorganisms and relationship with membrane fluidity modifications

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of slow chilling (2°C min−1) and rapid chilling (2,000°C min−1) were investigated on the survival and membrane fluidity of Escherichia coli, of Bacillus subtilis, and of Saccharomyces cerevisiae. Cell death was found to be dependent on the physiological state of cell cultures and on the rate of temperature downshift. Slow temperature decrease allowed cell stabilization, whereas the rapid chilling induced an immediate loss of viability of up to more than 90 and 70% for the exponentially growing cells of E. coli and B. subtilis, respectively. To relate the results of viability with changes in membrane physical state, membrane anisotropy variation was monitored during thermal stress using the fluorescence probe 1,6-diphenyl-1,3,5-hexatriene. No variation in the membrane fluidity of all the three microorganisms was found after the slow chilling. It is interesting to note that fluorescence measurements showed an irreversible rigidification of the membrane of exponentially growing cells of E. coli and B. subtilis after the instantaneous cold shock, which was not observed with S. cerevisiae. This irreversible effect of the rapid cold shock on the membrane correlated well with high rates of cell inactivation. Thus, membrane alteration seems to be the principal cause of the cold shock injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera J, Randez-Gil F, Prieto JA (2007) Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 31:327–341

    Article  CAS  PubMed  Google Scholar 

  • Al-Fageeh MB, Smales CM (2006) Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 397:247–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beney L, Marechal PA, Gervais P (2001) Coupling effects of osmotic pressure and temperature on the viability of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 56:513–516

    Article  CAS  PubMed  Google Scholar 

  • Boziaris IS, Adams MR (2001) Temperature shock, injury and transient sensitivity to nisin in Gram negatives. J Appl Microbiol 91:715–724

    Article  CAS  PubMed  Google Scholar 

  • Casadei MA, Manas P, Niven G, Needs E, Mackey BM (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68:5965–5972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu-Ky S, Tourdot-Marechal R, Marechal PA, Guzzo J (2005) Combined cold, acid, ethanol shocks in Oenococcus oeni: effects on membrane fluidity and cell viability. Biochim Biophys Acta 1717:118–124

    Article  CAS  PubMed  Google Scholar 

  • Drobnis EZ, Crowe LM, Berger T, Anchordoguy TJ, Overstreet JW, Crowe JH (1993) Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool 265:432–437

    Article  CAS  PubMed  Google Scholar 

  • Dumont F, Marechal PA, Gervais P (2004) Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates. Appl Environ Microbiol 70:268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graumann PL, Marahiel MA (1999) Cold shock response in Bacillus subtilis. J Mol Microbiol Biotechnol 1:203–209

    CAS  PubMed  Google Scholar 

  • Hagen JC, Wood WS, Hashimoto T (1976) Effect of chilling on the survival of Bacteroides fragilis. J Clin Microbiol 4:432–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram JM, Mackey BM (1976) Inactivation by cold. In: Skinner FA, Hugo WB (eds) Inhibition and inactivation of vegetative microbes. Academic, New York, pp 111–151

    Google Scholar 

  • Inouye M, Phadtare S (2004) Cold shock response and adaptation at near-freezing temperature in microorganisms. Sci STKE 237:pe26

    Google Scholar 

  • Jones PG, Inouye M (1994) The cold-shock response—a hot topic. Mol Microbiol 11:811–818

    Article  CAS  PubMed  Google Scholar 

  • Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol. Cell. 13:771–781

    Article  CAS  PubMed  Google Scholar 

  • Kaul SC, Obuchi K, Komatsu Y (1992) Cold shock response of yeast cells: induction of a 33 kDa protein and protection against freezing injury. Cell Mol Biol (Noisy-le-grand) 38:553–559

    CAS  Google Scholar 

  • Kolter R, Siegele DA, Tormo A (1993) The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874

    Article  CAS  PubMed  Google Scholar 

  • Konopasek I, Strzalka K, Svobodova J (2000) Cold shock in Bacillus subtilis: different effects of benzyl alcohol and ethanol on the membrane organisation and cell adaptation. Biochim Biophys Acta 1464:18–26

    Article  CAS  PubMed  Google Scholar 

  • Koshimoto C, Mazur P (2002) Effects of cooling and warming rate to and from −70 degrees C, and effect of further cooling from −70 to −196 degrees C on the motility of mouse spermatozoa. Biol Reprod 66:1477–1484

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New York

    Book  Google Scholar 

  • Laroche C, Gervais P (2003) Unexpected thermal destruction of dried, glass bead-immobilized microorganisms as a function of water activity. Appl Environ Microbiol 69:3015–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leder IG (1972) Interrelated effects of cold shock and osmotic pressure on the permeability of the Escherichia coli membrane to permease accumulated substrates. J Bacteriol 111:211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur P, Cole KW, Schreuders PD, Mahowald AP (1993) Contributions of cooling and warming rate and developmental stage to the survival of Drosophila embryos cooled to −205 degrees C. Cryobiology 30:45–73

    Article  CAS  PubMed  Google Scholar 

  • Meynell GG (1958) The effect of sudden chilling on Escherichia coli. J Gen Microbiol 19:380–389

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Bayles DO, Eblen BS (2000) Cold shock induction of thermal sensitivity in Listeria monocytogenes. Appl Environ Microbiol 66:4345–4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GJ, Clarke A (1987) Cells at low temperatures. In: Grout BWW, Morris GJ (eds) The effects of low temperatures on biological systems. Edward Arnold, Bedford Square, London, pp 72–119

    Google Scholar 

  • Pagan R, Mackey B (2000) Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential- and stationary-phase cells and variation among strains. Appl Environ Microbiol 66:2829–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA (2006) A Downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem 281:4638–4645

    Article  CAS  PubMed  Google Scholar 

  • Panoff J-M, Thammavongs B, Gueguen M, Boutibonnes P (1998) Cold stress responses in mesophilic bacteria. Cryobiology 36:75–83

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136

    CAS  PubMed  Google Scholar 

  • Ring K (1965) The effect of low temperatures of permeability in Streptomyces hydrogenans. Biochem Biophys Res Commun 19:576–581

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ, Evans RI, ter Steeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28:255–261

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Takahashi H (1968) Cold shock of bacteria. I. General features of cold shock in Escherichia coli. J Gen Appl Microbiol 14:417–428

    Article  Google Scholar 

  • Schechter E (1997) Fluidité membranaire. In: Schechter E (ed) Biochimie et biophysique des membranes. Aspects structuraux et fonctionnels. Masson, Paris Cedex 06, pp 95–110

    Google Scholar 

  • Simonin H, Beney L, Gervais P (2007) Cell death induced by mild physical perturbations could be related to transient plasma membrane modifications. J Membr Biol 216:37–47

    Article  CAS  PubMed  Google Scholar 

  • Souzu H (1986) Fluorescence polarization studies on Escherichia coli membrane stability and its relation to the resistance of the cell to freeze-thawing. I. Membrane stability in cells of differing growth phase. Biochim Biophys Acta 861:353–360

    Article  CAS  PubMed  Google Scholar 

  • Steponkus PL, Lynch DV (1989) Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. J Bioenerg Biomembr 21:21–41

    Article  CAS  PubMed  Google Scholar 

  • Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. Bioessays 20:49–57

    Article  CAS  PubMed  Google Scholar 

  • Weber MH, Marahiel MA (2003) Bacterial cold shock responses. Sci Prog 86:9–75

    Article  CAS  PubMed  Google Scholar 

  • Wouters PC, Bos AP, Ueckert J (2001) Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Appl Environ Microbiol 67:30923101

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Universitaire de la Francophonie (AUF) and the Vietnamese and French Ministries of Education and Training. We gratefully acknowledge stimulating discussions and carefully reading of the manuscript by Yves Waché, help in measurements of membrane fluidity evolutions by Jean-Marie Perrier-Cornet and the Plateau Technique “Imagerie Spectroscopique” IFR 92.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Marechal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao-Hoang, L., Dumont, F., Marechal, P.A. et al. Rates of chilling to 0°C: implications for the survival of microorganisms and relationship with membrane fluidity modifications. Appl Microbiol Biotechnol 77, 1379–1387 (2008). https://doi.org/10.1007/s00253-007-1279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1279-z

Keywords

Navigation